เซต (Sets)


เซต (Sets) หมายถึง กลุ่มสิ่งของต่างๆ ไม่ว่าจะเป็น คน สัตว์ สิ่งของ
หรือนิพจน์ทางคณิตศาสตร์ ซึ่งสามารถระบุสมาชิกในกลุ่มได้ และเรียก
สมาชิกในกลุ่มว่า "สมาชิกของเซต"

การเขียนเซต
  การเขียนเซตนิยมใช้อักษรตัวใหญ่เขียนแทนชื่อเซต และสามารถเขียนได้ 2แบบ
1. แบบแจกแจงสมาชิกของเซต
  ตัวอย่างเช่น A = {1, 2, 3, 4, 5}
  B = { a, e, i, o, u}
C = {...,-2,-1,0,1,2,...}
2. แบบบอกเงื่อนไขของสมาชิกในเซต
  ตัวอย่างเช่น A = { x | x เป็นจำนวนเต็มบวกที่มีค่าน้อยกว่าหรือเท่ากับ 5}
  B = { x | x เป็นสระในภาษาอังกฤษ}
C = {x | x เป็นจำนวนเต็ม}
 
  สัญลักษณ์ที่ใช้แทนเซตของจำนวนต่างๆมีดังนี้
I- แทนเซตของจำนวนเต็มลบ Q- แทนเซตของจำนวนตรรกยะที่เป็นลบ
I+ แทนเซตของจำนวนเต็มบวก Q+ แทนเซตของจำนวนตรรกยะที่เป็นบวก
I แทนเซตของจำนวนเต็ม Q แทนเซตของจำนวนตรรกยะ
N แทนเซตของจำนวนนับ R แทนเซตของจำนวนจริง
 
เซตจำกัด      
  บทนิยาม เซตจำกัด คือ เซตที่สามารถระบุจำนวนสมาชิกในเซตได้
  ตัวอย่างเช่น A = {1, 2, 3, 4, 5} มีสมาชิก 5 สมาชิก
    B = { a, e, i, o, u} มีสมาชิก 5 สมาชิก
 
เซตอนันต์
เซตอนันต์ คือ เซตที่ไม่ใช่เซตจำกัด หรือเซตที่มีจำนวนสมาชิกมากมายนับไม่ถ้วน
ตัวอย่างเช่่น C = {...,-2,-1,0,1,2,...}
 
เซตที่เท่ากัน
เซต A และเซต B จะเป็น เซตที่เท่ากัน ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสมาชิกทุกตัวของเซต B เป็นสมาชิกทุกตัวของเซต A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A= B
ตัวอย่างเช่่น A = {1, 2, 3, 4, 5}
  B = { x | x เป็นจำนวนนับที่มีค่าน้อยกว่าหรือเท่ากับ 5}
  A = B
 
เซตว่าง
เซตว่าง คือ เซตที่ไม่มีสมาชิก หรือมีจำนวนสมาชิกในเซตเป็นศูนย์ สามารถเขียนแทนได้ด้วยสัญลักษณ์ {} หรือ Ø
ตัวอย่างเช่่น A = {x | x เป็นจำนวนเต็ม และ 1 < x < 2} ∴ A = Ø
  B = { x | x เป็นจำนวนเต็มบวก และ x + 1 = 0 } ∴ ฺB = Ø
เนื่องจากเราสามารถบอกจำนวนสมาชิกของเซตว่างได้ ดังนั้น เซตว่างเป็นเซตจำกัด
 
เอกภพสัมพัทธ์
เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u
ตัวอย่างเช่่น ถ้าเราจะศึกษาเกี่ยวกับจำนวนเต็ม
  U = {...,-2,-1,0,1,2,...}
  หรือ U = {x | x เป็นจำนวนเต็ม.} 
 
สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
ตัวอย่างที่ 1 A = {1, 2, 3}
  B = { 1, 2, 3, 4, 5}
  A ⊂ B
ตัวอย่างที่ 2 C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,...}
  D = { x | x เป็นจำนวนคี่ } = {...,-3,-1,1,3,...}
  C D
ตัวอย่างที่ 3 E = { 0,1,2 }
  F = { 2,1,0 }
  E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้ เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซต ถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n - 1 เซต

เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)
ตัวอย่างที่ 1 A = Ø
  สับเซตทั้งหมดของ A คือ Ø
  P(A) = {Ø }
ตัวอย่างที่ 2 B = {1}
  สับเซตทั้งหมดของ B คือ Ø, {1}
  P(B) = {Ø, {1} }
ตัวอย่างที่ 3 C = {1,2}
  สับเซตทั้งหมดของ C คือ Ø, {1} , {2}, {1,2}
  P(C) ={Ø, {1} , {2}, {1,2} }  
  
การเขียนแผนภาพแทนเซต
      ในการเขียนแผนภาพแทนเซต เราเขียนรูปปิดสี่เหลี่ยมมุมฉากแทนเอกภพสัมพัทธ์ และรูปปิดวงกลม หรือวงรีแทนสับเซตของเอกภพสัมพัทธ์ ดังนี้
      เราเรียกแผนภาพดังกล่าวข้างต้นนี้ว่า "แผนภาพเวนน์ - ออยเลอร์" (Venn-Euler Diagram)
           
ยูเนียน (Union)
บทนิยาม
      เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น A ={1,2,3}
  B= {3,4,5}
 
A ∪ B = {1,2,3,4,5}
           
อินเตอร์เซกชัน (Intersection)
บทนิยาม
      เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่น A ={1,2,3}
  B= {3,4,5}
 
A ∩ B = {3}
           
คอมพลีเมนต์ (Complements)
บทนิยาม
      ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A'
ตัวอย่างเช่น U = {1,2,3,4,5}
  A ={1,2,3}
 
A' = {4,5}
           
ผลต่าง (Difference)
บทนิยาม
      ถ้าเซต A และ B เป็นเซตใดๆในเอกภพสัมพัทธ์ u เดียวกันแล้ว ผลต่างของเซต A และ B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A - B
ตัวอย่างเช่น A ={1,2,3}
  B= {3,4,5}
 
A - B = {1,2}



• ถ้า A เป็นเซตจำกัดแล้ว สามารถเขียนแทนจำนวนสมาชิกของเซต A ด้วย n(A)
• ถ้า A และ B เป็นเซตจำกัดที่อยู่ในเอกภพสัมพัทธ์ U แล้ว
  n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
  n(A - B) = n(A) - n(A ∩ B)
  n(B - A) = n(B) - n(A ∩ B)
 
• ถ้า A, B และ C เป็นเซตจำกัดที่อยู่ในเอกภพสัมพัทธ์ U แล้ว
  n(A ∪ B ∪ C ) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩C)













แหล่งอ้างอิง
  กวิยา เนาวประทีป เทคนิคการเรียนคณิตศาสตร: เรขาคณิตวิเคราะห์ กรุงเทพมหานคร : ฟิสิกส์เซ็นเตอร์, 2547.
  กวิยา เนาวประทีป เทคนิคการเรียนคณิตศาสตร: ระบบจำนวนจริง กรุงเทพมหานคร : ฟิสิกส์เซ็นเตอร์, 2547.
  กวิยา เนาวประทีป เทคนิคการเรียนคณิตศาสตร: เซต กรุงเทพมหานคร : ฟิสิกส์เซ็นเตอร์, 2547.
  กวิยา เนาวประทีป เทคนิคการเรียนคณิตศาสตร: ตรรกศาสตร์ กรุงเทพมหานคร : ฟิสิกส์เซ็นเตอร์, 2547.
   



ไม่มีความคิดเห็น:

แสดงความคิดเห็น